B. Math First Semester 2005 Final Examination Analysis 1 24-11-05

Answer all the questions. All answers require justification. If you are using a theorem/result proved in the class, state it correctly. Points: $6 \times 10 = 60$. Time: 3hrs

- 1) Define a countable set and show that the union of a sequence of countable sets is countable.
- 2) Let $\{r_n\}_{n\geq 1}$ be an enumeration of rational numbers in [0,1]. Show that there exists a nested sequence of closed intervals $[a_n,b_n] \subset [0,1]$ such that $r_n \notin [a_n,b_n]$ for all n.
 - 3) Compute the following limits. Give reasons for your conclusion.

a) $\lim_{n\to\infty} \frac{1}{2^n} \left(1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}\right)$

- b) Let $\{x_n\}_{n\geq 1} \subset (-1,1)$. Suppose $\lim_{n\to\infty} \frac{x_{n-1}}{x_{n+1}} = 0$. Compute $\lim_{n\to\infty} x_n$.
- 4) a) Let $\sum a_n$ be an absolutely convergent series. Show that every rearrangement of the series $\sum a_n$ converges.
 - b) Show that $\sum (\frac{\sin n}{n})^{\frac{1}{n}}$ converges.
- 5) Let $f: [0,1] \to [0,1]$ be a continuous function. Show that for any positive integer n, there exists a $x_0 \in [0,1]$ such that $\sup\{\frac{x^n}{1+f(x)}: x \in [0,1]\} = \frac{x_0^n}{1+f(x_0)}$.
 - 6) Let $g: [-1,1] \rightarrow (0,1)$ be a continuous function. Show that g is not an onto map.
- 7) Let N denote the set of natural numbers. Let $g: R \to R$ be defined by $g(x) = \inf\{|x n| : n \in \mathbb{N}\}.$

Show that g is uniformly continuous.

- 8) Let $f:(0,1) \to R$ be a function. Show that f is differentiable at a point $c \in (0,1)$ if and only if there exists a function $A:(0,1) \to R$ that is continuous at c such that f(x) f(c) = A(x)(x-c) for all $x \in (0,1)$.
- 9) Let $f: R \to R$ be a differentiable function. Suppose for every $x, f'(x) \neq 0$. Show that f is an injection and f(R) is an open interval.
- 10) Let $f: [-1,1] \to R$ be a thrice differentiable function. Suppose f(-1) = 0 = f(0) = f'(0) and f(1) = 1. Show that there exists $s \in (0,1)$, $t \in (-1,0)$ such that $f^{(3)}(s) + f^{(3)}(t) = 6$.